If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2-20t-41=0
a = 4.9; b = -20; c = -41;
Δ = b2-4ac
Δ = -202-4·4.9·(-41)
Δ = 1203.6
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-\sqrt{1203.6}}{2*4.9}=\frac{20-\sqrt{1203.6}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+\sqrt{1203.6}}{2*4.9}=\frac{20+\sqrt{1203.6}}{9.8} $
| -(1+5m)=(m+1) | | 15(8)=s | | -4(-3+6p)+8=-137 | | x2–3x+8=0 | | 7k^2+4K+5=8 | | 58=7-3a | | -5(6x-4)=5(4+x) | | 3(r+12)=330 | | A=(3x+5)(6x-4) | | (-1/2)=2x-6 | | 58=5-3a | | 5(2x+2)=30+6x | | -18-1x-4=-111 | | 13-2x=4x-17 | | 1+-3=8n | | 15y+8=(2y+2) | | 8m-2(m+5)=-4m | | -344=8(-5n-8) | | 14-6x=-5(-6-2x) | | 100t+130=450 | | 20=4*n | | 11+2x=x+4 | | -38-2n=8(1-6n) | | 4+6n=13+3n | | 2(5x-7)+5x=61 | | 7x-5x-3=x+4 | | 2x+6x+1=8x-2 | | 5x-3x-6=14 | | x(1-x)=0.05 | | -85=-5(1+2x) | | 3x+2+x+12=90 | | 20=4•n |